

DS SERIES SOLAR SYSTEM

PERMIT INFORMATION

CONSOL 30-58-1800 COLLECTOR FLAT MOUNT ON CORRUGATE IRON ROOF VALVE VENT, OPEN LOOP

info@consol.nz

www.consol.nz

Contents

About Consol	3
Product Description	3
Pump Controller	4
Supplementary Heating Controller	4
Pump	4
Valves	5
Pipeline and Insulation	5
Water Tank	5
Technical Parameters	6
Collector Schematic	9
Fixing	9
Plumbing Diagram	11
Connection of Controllers	11
Connection of Pump	12
Connection of Cylinder	12
Appendix 1	13

About Consol

Consol New Zealand is a full member of the Solar Industries Association and is accredited for supply and installation.

The Consol system is both AS/NZS 2712:2007 and Energy Efficiency & Conservation Authority (EECA) approved. A copy of Consol's AS/NZS 2712:2007 certification is included in Appendix 1.

Product Description

This system is an evacuated tube system coupled to a stainless-steel cylinder with a valve vented open loop circuit.

The panel is 2450mm wide by 1890mm high. It is a lightweight panel at 20kg/m² and is fixed to the roof with rubber blocks to create an air space of 20mm between the frame and the roof.

The manifold and frame for mounting is manufactured from powder coated aluminium, while the tubes are borosilicate glass, and the fixings are galvanised.

All pipework on the solar circuit is 15mm copper insulated with 13mm wall Armaflex FR. All external insulation is wrapped to protect it from the elements.

Legionella is controlled by pumped circuit and auxiliary heating.

Consol solar systems are to be installed only by accredited installers.

Pump Controller

The pump controller runs the system and measures temperatures at the cylinder and manifold via temperature probes. This enables the controller to decide the optimal time to start the pump to transfer the heated fluid from the manifold to the cylinder. Power supply to the controller and pump are not to be on a circuit that is controlled by the electricity supplier.

The pump controller protects the system against freezing and overheating. The operation instructions for the controller clearly outline the functions and settings of the system and need to be used in conjunction with the set up and future operation of the system.

The controller for this system requires three probes for accurate operation. Probe location is outlined in the controller operation and installation manual. Probe pockets are to be dry before being inserted.

A separate instruction manual for the controller is supplied.

Supplementary Heating Controller

The controller manual also outlines the programming of the timing heating parameters necessary for efficient operation and should be followed.

This is critical as the cylinder temperature must reach 60 degrees once a day to control the growth of legionella which is a human health hazard.

<u>Pump</u>

The pump is the means of transferring the heated fluid from the manifold to the cylinder and the cooler fluid from the cylinder to the manifold to be heated. The pump is operated by the controller and needs a continuous supply of power to allow frost protection of the system. This should be prominently displayed. The pump should draw the coldest water from the bottom of the tank and return it at a higher point using the connection points recommended by the manufacturer.

When mounted securely the pump must be above the cylinder safe tray in case of leakage. An isolation valve is to be located either side of the pump to enable ease of removal for servicing.

The pump has three settings and a flow meter is to be used to enable the correct flow rate (30 litres/hr/m² of collector area). The controller manual outlines the settings for the pump and controller operation and changing these settings will affect the performance of the system.

<u>Valves</u>

The valves associated with the solar system are necessary for protection, operation, and maintenance of the system. The necessary valves are outlined in the schematic drawings of the plumbing diagrams. If draining the cylinder for maintenance of valves all electrical supply to the cylinder must be disconnected.

Pressure created by the system will be relieved through the cold-water expansion and temperature pressure relief on the cylinder. Easing of valves is to be carried out by a registered craftsman plumber. Tempering valve is necessary to reduce the water to a safe temperature.

The air relief valve is located at the highest point of the pipework. Use only CALEFFI SOLAR AI RELIEF 250031, rated to 180° Celsius and 10 Bar.

There is also a non-return value on the inlet line and outlet line of the collector, to and from the cylinder, and two shut off values either side of the pump.

Pipeline and Insulation

- Use copper pipeline no less than 15mm.
- Use long radius bends to reduce resistance to flow rates. Pipework is to be flushed of foreign material.
- Pipework to be pressure tested to 1.5 times the maximum working pressure prior to insulating.
- Insulation of the solar pipework is to be Armaflex FR.
- External insulation to be foil covered to reduce degradation from the elements.
- Length of pipework should be kept to a minimum to reduce the time for completing fluid transfer.
- Long pipe runs should incorporate expansion loops, horizontally formed to avoid air locks.
- Insulation material, insulation thickness, and operation method should comply with regional regulation.

Water Tank

The Cooper solar ready cylinder is constructed of Duplex stainless steel and is an integral part of the solar package.

The cylinder comes with the temperature and pressure relief valve that must be installed. Cylinders will be placed on a safe waste tray with a minimum 40mm diameter if it is installed in a location that leakage could cause damage to property.

Technical Parameters

Water heater model number: Consol 30-58-1800 with the MP 300 cylinder

Date of AS/NZS 2712:2007 compliance approval: 2007

Manifold: unitary aluminium alloy manifold
Thickness: 1.9mm
Material of bracket: aluminium allow 1.9mm
Material of heater pipe: T2 copper
Insulation material: rock wool
Thickness of rock wool: 96mm
Density of rock wool: 80kg/m ³
Seal: silicon rubber
Hydraulic connections: copper pipe
Max. operation pressure 8 bar
Test pressure: 10 bar
Max. working temperature: 220°
Min. working temperature: -40°
Max. tilt angle: 45°
Min tilt angle: 15°
Thickness of water carrying tube: 0.8mm
Surface finish: powder coated
Permissible wind: 45m/s
Snow load: <0.6kpa

Information about the cylinder used			
Cylinder manufacturer	H J Cooper Ltd		
Cylinder model number	MP180	MP250	MP300
Cylinder physical (total) volume	180L	250L	300L
Cylinder rated volume (if known)	180,	250	300
Cylinder MEPS rated?	Yes		
Cylinder standing heat-loss (kWh/day at Tcyl	180L: 1.13	250L: 1.59	300L: 1.76
-Tamb) = 55ºC			
Test lab for standing heat-loss date of test	23/07/2005	10/08/2005	23/07/2005
Cylinder inner diameter	448mm		
Cylinder wall overall thickness (including all	1.0mm		
wall components, e.g. glass lining if	#2304 Duplex stainless steel		
applicable, inner metal shell, insulation,			
outer metal shell)			
Cylinder wall components' materials and	N/A		
individual thicknesses (here should be given			
the individual thicknesses of the wall			
components mentioned above)			
Thickness of insulation and type of foam	50mm nominal, exp	poly	
Number of elements in cylinder	1 standard with 2 nd c	ptional	
Element power rating (in kW)	3 kW		

Height of element 1 from bottom of cylinder	Element dips down to 100mm from the bottom of the
	cylinder
Electricity tariff element 1 is connected to	Night rate
Height of element 2 from bottom of cylinder	1076mm
Electricity tariff element 2 is connected to	Day/night rate
Height of thermostat 1 above the bottom of	335mm
the cylinder	
Height of thermostat 2 above the bottom of	1076mm
the cylinder	
Thermostat temperature difference	+/- 5°C
between ON/OFF (temp dead band)	
Thermostat set point (1)	65°C
Thermostat set point (2)	65°C
Height of cold sensor above the bottom of the cylinder	340mm
Does the cylinder have an internal enamel layer?	Νο
If yes, what is the thickness of the enamel layer?	N/A
Height of hot water draw-off port on side of	1726mm
cylinder from bottom of cylinder	
Height of inlet of dip tube connected to hot	N/A
water draw-off port (if present)	
Height of cold water (mains) entry into the	5mm
cylinder (from the bottom of cylinder)	
Information about t	he auxiliary boost controller
Controller temperature difference between	Range 2° - 15°C
ON/OFF (dead band) (if electronic	Default valve is set at 8°C
thermostat used)	
limer settings (if timer used) for each	3 timer settings: morning, noon, night
Hold-off timer settings (if used)	Controller timer based hold off
Frost protection settings (if used)	Frost protection range 2° - 10°C
Other controller functions (if used)	High temperature protection, temperature
	difference circulation, timer controlled circulation,
	temperature controlled circulation, temperature
	controlled auxiliary heating settings
Information a	bout the solar collector
Solar collector model no.	
Type of collector	Evacuated tube system
Tested to the standard AS 2535	SPF test report
Collector gross area	4.725m ²
Collector aperture area	-
	2.833m ²
Collector absorber area	2.833m ² 2.429m ²
Collector absorber area Weight of collector loaded with fluid	2.833m ² 2.429m ² 98kg
Collector absorber area Weight of collector loaded with fluid Collector glass type	2.833m ² 2.429m ² 98kg Borosilicate
Collector absorber area Weight of collector loaded with fluid Collector glass type Absorber type, and material bonded onto	2.833m ² 2.429m ² 98kg Borosilicate Al ni Al

Collector inlet pipe inner diameter	20mm	
Collector outlet pipe inner diameter	20mm	
Information specific	to evacuated tube collectors	
Heat pipe length (for evacuated tube systems)	1723	
Header length	2450mm	
Header inner diameter (for evacuated tube	33mm	
systems		
Insulation material used for the header	Rock wool	
How is heat transferred from the glass tube	Via a copper endothermic tube that inserts into	
to the header/cylinder	socket in the manifold	
Shape of fin (if used): either describe or	Hamburger bun shaped aluminium fins	
sketch		
Reflectors	Individual stainless reflectors that inset between	
	lower side of the tubes. The reflectors cover 80% of	
	the collector area	
Information about the dif	ferential controller and pump used	
Differential controller model	SR868C6	
Pump supplier and model number	WILO RS25/6	
Pump flow rate	3 setting optimal 90-100 L/HR	
Flow meter used on installation	No	
Placement of panel sensor	Placed into socket welded to the insulated material	
Placement of cylinder sensor 1 (cold) –	335mm	
neight above bottom of cylinder	1207	
height shows bettern of cylinder	139/mm	
Open or closed circuit	Open	
Information about the nin	open	
Collector inlet nine insulation material		
Collector inlet pipe insulation thickness	25mm	
Collector outlet nine insulation material	Centurylon	
Collector outlet pipe insulation thickness	25mm	
Diameter of nining used (ID)	15mm	
Height of hot water draw-off port on side of	310	
cylinder from bottom of cylinder	510	
Height of inlet of din tube connected to hot	5mm from bottom of cylinder	
water draw-off port if there is one		
General		
How does the system control stagnation	Controller is fitted with a high temperature	
events?	protection feature. When temperature reaches a set	
	temp the controller opens a valve on the inlet pipe	
	and shuts off the pump. When the tank temperature	
	lower to a set parameter temperature the function is	
	deactivated	
How does the system control freezing	Frost protection via insulation and programme in the	
events?	controller to avoid freezing	
What is the maximum temperature the	Cylinder max. temperature is 90°C. The controller has	
cylinder can withstand? How do you control	a function to stop the cylinder heating at set	
over-temperature within the cylinder?	temperature.	

Collector Schematic

Fixing

Fixings are to be fastened through the top of the corrugations. The frame is to be set 20mm off the roof by way of rubber packers at the fixing points. Fixings are to be galvanised and securely fixed through the purlin into the roof truss.

Frame upright can be adjusted by related situation about the roof.

INSTALLATION DETAILS CONSOL 'D' SERIES SOLAR COLLECTORS

CORRUGATED ROOFING PROFILE

NOTE: FIXINGCHANNELS MUST BELOCATED ALONG THE TOP OF THE CREST.

CORRUGATED PROFILE ROOFING

PIPE PENETRATION FLASHING

MAXIMUM ROOF PITCH FOR THIS FLASHING 45* MINIMUM PITCH 10*

Plumbing Diagram

Connection of Controllers

The installation and commissioning of the controller must be carried out by a registered electrician and must be completed in accordance with the operation and instruction manual. Care should be taken when wiring in the controller auxiliary heating where ripple control could disturb the operation of the system. The adjustment of controllers may adversely affect solar performance.

The controller controls the system components. It will operate the switching time of the cylinder and pump. There needs to be a continuous power supply to the controller as the freeze protection function is operated by the controller. This system operates with three temperature probes that are wired to the collector, cylinder, and controller. Placement of the sensors according to the wiring diagrams is important. Sensor cables are to be protected from degradation by weather and animals.

The controller is to be installed in a position that is accessible for servicing.

Connection to the mains is via a plug and is not to be hard wired.

Functions of the controller include:

- Temperature difference controlling
- Temperature control auxiliary heating
- Time controlled auxiliary heating

- Temperature control hot water circulation
- Anti-freezing protection
- High temperature protection

Connection of Pump

The pump in this direct system will draw the water from the low point of the cylinder, circulate it through the collector(s) and return the heated water at a higher point than the draw off point.

The pump used in this system is the WILO RS25/6.

The pump will be installed with isolation fittings either side that will allow for removal for maintenance or replacement.

This pump is designed to produce the hydrostatic head that may not be suitable for every application.

The pump is wired into and operated by the system controller.

The pump is to be mounted according to the manufacturer's instructions and according to the system layout diagrams.

The pump is fitted to the system by the installer and the wiring is carried out by the electrician.

Connection of Cylinder

The chosen cylinder for the Consol system is the Cooper Mains Pressure Stainless Steel Solar Ready MP series.

The cylinder comes standard with element and thermostat and temperature/pressure relief valves set to 90°C and 850kpa (the cylinder has a manual resettable cut out button set at 85 degrees). Cylinders are to be restrained as per the Building Code. Thermostats should be set to 55°C or to 45°C for the elderly and child-care facilities.

The cylinder is to be filled and vented prior to being energised by power or solar.

The cylinder is the storage for the water heated via solar gain and is to be correctly sized according to the water usage and the size of the collector. The cylinder has an electrical element to back up the solar. The electrical element is wired to and is controlled by the controller.

Appendix 1

P.O. BOX 687, NELSON, NEW ZEALAND

PHONE (03) 547 7347 FAX (03) 547 2909 EMAIL: info@appliedresearch.co.nz WEB: www.appliedresearch.co.nz

Report 10/2	266	July 2 nd , 2010	Page 1/2
Customer: Attention:	Consol NZ Ltd PO Box 36409 CHRISTCHURCH 8146 Matt Wheelans		P1514/9
		• • •	

Compliance Certificate

Appliance:	Consol NZ Ltd 58-1800 tube SHW systems
Standard Applied:	AS/NZS2712:2007
Full Report Ref.:	10/2229, 10/2150

Based on the information and results obtained during testing and assessment, the Consol NZ Ltd solar hot water systems comply with the type testing requirements of AS/NZS2712:2007. Systems covered by this certificate are listed below.

This compliance certificate relates only to the product sample tested. Any modifications to the product may invalidate the compliance results.

Our reports 10/2229 and 10/2150 gives details of the appliance, the assessment and the results obtained.

This report:

Prepared by: G. Looman

Approved by: W. S. Webley

Release Date:

This report must not be reproduced except in full. Results are based on material and information supplied by the client. Applied Research Services Ltd shall not be liable in respect of any loss or damage (including consequential loss or damage) resulting from the use of reports prepared by them. Results issued in electronic form are subject to confirmation by Issue of final written report.

HJ COOPER Ltd

130 St Georges Road Avondale Auckland PO Box 15-776, New Lynn. Ph: (09) 828-6852 Fax: (09) 828-4134 Email jason@hjcooper.co.nz 3 March 2010

To whom it may concern

This certifies that duplex stainless steel mains pressure cylinder with heat exchanger made by HJ Cooper Ltd complies with the relevant requirements of NZS4606.1:1989.

The type of cylinder mentioned above is listed on www.energyrating.govt.au.

Yours faithfully

Jason Chen

707

Production Manager

Telephone 64 9 828 6852Facsimile 64 9 828 4134www.hjcooper.co.nz130 St Georges Rd, Avondale.PO Box 15776, New Lynn, Auckland, New Zealand

HJ COOPER Ltd

130 St Georges Road Avondale Auckland PO Box 15-776, New Lynn. Ph: (09) 828-6852 Fax: (09) 828-4134 Email jason@hjcooper.co.nz 3 March 2010

To whom it may concern

This certifies that the hot water cylinder manufactured by HJ Cooper meets requirements of clause 3.3 of standard AS/NZS 2712:2007.

Yours faithfully

Jason Chen

meken

Production Manager.

Telephone 64 9 828 6852 Facsimile 64 9 828 4134 www.hjcooper.co.nz 130 St Georges Rd, Avondale. PO Box 15776, New Lynn, Auckland, New Zealand